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Improving Scene Text Retrieval via Stylized Middle Modality

SHIPENG ZHU, JUN FANG, PENGFEI FANG, and HUI XUE, School of Computer Science and
Engineering, Southeast University, Nanjing, China and Key Laboratory of New Generation Artificial
Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education,
Nanjing, China

Scene text retrieval addresses the challenge of localizing and searching for all text instances within scene
images based on a query text. This cross-modal task has significant applications in various domains, such as
intelligent transportation systems and social media analysis. In practice, ensuring consistency of the same
content between two modalities is crucial in improving retrieval accuracy. This article addresses the issue by
introducing a stylized middle modality, which fuses the graphical query text with the style of the extracted
text proposal. To this end, we propose a stylized middle modality learning (SM?L) framework. The proposed
stylized middle modality enables the network to jointly enforce constraints on visual feature coherence and
text semantic feature consistency in the optimization phase, thereby minimizing the modality gap in the
retrieval space. This brings in two major advantages: (1) SML will pave the way to seamlessly benefit the
scene text retrieval and (2) the proposed learning paradigm enables the machine to avoid adding redundant
computing resources in the inference phase. Substantial experiments demonstrate that the proposed method
outperforms the state-of-the-art retrieval performance considerably.
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1 Introduction

Perceiving text efficiently in scene images is crucial for various real-world applications, includ-
ing social media analysis [52], robot navigation [28], intelligent transportation [13], and privacy
protection [36]. Central to this goal, numerous studies within the community have delved into
text recognition [46], detection [8], and spotting [51]. Distinct from the above scenarios, retrieving
the specific text from a vast collection of natural images is an interesting problem, which can be
encapsulated by the paradigm of scene text (ST) retrieval. Introduced in [21], ST retrieval involves
localizing and identifying ST instances in images based on a given query text (shown in Figure 1(a)).
Essentially, this task aims to develop a content analysis system typical of multi-media applications,
which establishes the relevance between query text and specific regions within ST images. Such
a setting is pivotal for our daily life. For example, the act of finding images with specific textual
content from an expansive gallery of smartphone photographs, or leveraging partial recollected text
to discover more comprehensive textual content, is a common yet extremely time-consuming task.
As a result, the functionality for ST image retrieval has been incorporated into the photo album
features of some mobile systems. Furthermore, this task can serve as a critical component in more
applications, e.g., text-aware event re-identification [24], automatic navigation [42], and key infor-
mation extraction [34], shown in Figure 1(b). However, ST retrieval presents two main challenges: (1)
Locating instances of ST graphics that match the query terms. ST instances within images are typi-
cally dense, varied, and of irregular sizes, which can lead to ambiguities for the model; (2) Achieving
a balance between retrieval performance and processing speed, as numerous retrieval tasks are
typically subject to real-time demands. Notably, common image-text retrieval systems [7, 30, 50],
although showing good performance in general multi-media scenarios, fall short of resolving this
problem. Specifically, these methods concentrate on the alignment of text-image (T&I) semantics,
resulting in an inability to handle the complex aggregations of multiple characters [56, 59].

Over the years, several approaches [17, 19] have been developed to tackle the ST retrieval problem,
with many relying on text spotting methods. As illustrated in Figure 2(a), these methods aim to detect
and recognize all text instances within scene images to solve the first challenge. Subsequently, the
recognized ST instances are matched with the query text. Consequently, they can achieve effective
retrieval performance for text instances that are of substantial size and high quality. However, a
notable issue of retrieval omissions arises from this “Text-Text” (T&T) paradigm. Specifically,
while striving for both detection and recognition accuracy, these methods might overlook vague text
instances. As a result, spotting methods might not generate adequate candidate proposals, leading
to ignorance of tiny and sub-word instances [38]. Meanwhile, within this paradigm, the majority
fail to effectively balance the precision of text recognition with processing speed [42], leading to
limitations in many applications. In contrast, some tailored methods, as shown in Figure 2(b) and
referenced in [9, 21, 38], approach the problem as a direct T&I cross-modality matching paradigm.
The main strategy involves locating potential ST instance proposals and subsequently projecting
them, along with the query text, into a shared embedding space for similarity evaluation. This
paradigm can initially select a wide array of potential text areas. Employing subsequent similarity
evaluation, it advances the selection process, significantly alleviating the shortcomings of omission
in T&T methodologies. A significant drawback, however, is that these methods often neglect the
modality gap between textual and visual data [29], thereby constraining their effectiveness. Most
recently, Wen et al. introduced a visual matching paradigm [44]. In this “Image-Image” (I&I)
approach, the query text is converted into its corresponding graphical image, as seen in Figure 2(c).
The visual similarity between this representation and ST instance proposals is then assessed.
This technique seeks to resolve the modality gap by aligning visual data. Yet it is constrained
by its heavy reliance on visual features, resulting in challenges when distinguishing between
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Fig. 1. (a) Given a query text “HOTEL,” the ST retrieval method aims to search all images containing “HOTEL”
from the gallery and output their locations in the images. (b) Downstream application examples of ST retrieval.
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Fig. 2. The illustration of different kinds of ST retrieval methods. (a) Text spotting methods localize and
recognize all the text instances used for T&T retrieval. (b) Conventional retrieval methods consider the task as
the T&l cross-modal matching task. (c) Wen et al. convert query words into images to retrieval text instances
in an 1&l manner. (d) Our method stylized middle modality learning (SM2L) proposes the “Text-Image-lmage”
(T&1&I) paradigm during the training phase (denoted by the blue lines). The middle modality is omitted
during the inference phase.
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analogous characters, such as “c” and “e” or “a” and “0,” particularly in the context of low-quality
image regions.

At its core, ST retrieval seeks to identify specific ST instances that align with the content of
a given query text. However, as aforementioned, previous approaches struggle to achieve both
semantic coherence across modalities and visual alignment between the query text and the ST
instances. Such shortcomings can lead to problems of omissions and erroneous associations in
the retrieval process, which in turn, restrict the effectiveness of the retrieval capabilities. These
analyses inspire us to approach the challenge from a dual perspective. Specifically, we aim to
maintain semantic consistency while introducing visual constraints during the optimization phase.
A stylized middle modality is designed to retain the content of the query text while adopting the
style of the ST instances. As a result, we introduce a novel stylized middle modality learning
(SMZL) framework, illustrated in Figure 2(d). The SM2L framework encompasses three distinct
branches: the ST image branch, the Stylized Graphical Text (SGT) image branch, and the Text
(T) branch. During training, the ST branch generates ST instance proposals from candidate scene
images. Simultaneously, the SGT branch, serving as a middle modality, transforms the query text
into SGT. This transformation leverages the visual attributes of both the query text and the ST
instance proposals, e.g., character structure and texture. The T branch, on the other hand, is devised
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to enforce semantic consistency. In light of [57], we deploy a multi-task learning approach for the
three modalities, encompassing ranking learning, character learning, and adversarial learning. This
strategy jointly optimizes the visual and semantic consistency across visual and textual modal
features. Therefore, SM2L features three technique innovations, along with the superior performance
they bring: (1) We introduce, for the first time in the domain of ST retrieval, a triple-modality training
framework. This framework employs a stylized middle modality to act as a conduit, connecting the
visual information of the ST to the textual attributes of the query terms, which markedly mitigates
the challenges posed by the modality gap. Furthermore, this framework ensures efficiency by
maintaining only the dual-modality similarity calculations during the inference phase; (2) Our
approach employs simple yet effective networks to construct the triple branches. Here, the SGT
modality can capture the visual correlation between the query text and the ST instances, while the T
modality addresses the ambiguity arising from visually similar words through leveraging semantic
understanding. (3) The multi-task learning paradigm incorporates multi-granularity predictions
and the multi-alignment of feature similarity. In practice, these strategies significantly enhance
training efficiency.
The contributions of this article are shown as follows:

—We introduce a novel SM’L framework, a pioneering approach that incorporates a stylized
visual middle modality. This modality acts as a bridge, connecting the query text with the ST
image, thus effectively addressing the challenges in ST retrieval.

—The SM2L framework uniquely leverages a multi-task learning paradigm, integrating the
ST image, SGT image, and textual data. This paradigm reconciles the semantic and visual
consistency of the query text and ST instances during the optimization phase.

—Extensive experiments demonstrate that the proposed SM2L achieves state-of-the-art (SOTA)
performance on three benchmark datasets. Ablation studies verify the effectiveness and
essential contributions of the various components in the SM?L framework.

2 Related Work
2.1 ST Spotting

ST retrieval inherently demands two key capabilities: searching for images that contain the queried
text and pinpointing the specific text instance. Image-level and Optical Character Recognition-based
retrieval methods fall short when faced with typical ST images, which often feature dispersed
text instances and intricate backgrounds. A natural solution to ST retrieval involves spotting
the text, i.e., pinpointing and identifying the texts within images and then retrieving them in a
“T&T” fashion. A landmark in spotting work, named Mask TextSpotter [19], utilizes an end-to-end
framework for text of varying shapes and has displayed commendable results. Several subsequent
endeavors employ different foundational structures to elevate detection and recognition precision.
For instance, the ABCNet series [17, 18] introduce the adaptive Bezier curve network, a strategy that
proves effective in managing oriented and curved ST. [6] integrates a language model in character
decoding, notably improving recognition precision. Following the Transformer [5] style process,
TESTR [55] casts the DETR [3] framework to decode the locations and characters of text instances
in parallel. Furthermore, the SOTA method, ESTextSpotter [14], uniquely employs a single decoder
to model discriminative and interactive features, allowing it to detect and recognize text in one
seamless action. Other methods exploit simplified features to improve the spotting speed. PAN++
[41] leverages the lightweight module to detect text kernel instead of complex segmentation. By
imposing point gathering Connectionist Temporal Classification loss [11], PGNet [40] excavates
the pixel-level character feature map, avoiding time-consuming operations like Non-Maximum
Suppression [54]. Although such spotting methods have promising performance on text spotting,
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they are always prone to miss some potential text instances due to different optimization criteria
with the retrieval task.

2.2 ST Retrieval

Cross-media retrieval [45] has long been a hot topic within the community. In most cases, the
primary objective typically revolves around the retrieval of particular images leveraging textual
information. Some advances [47, 48, 58], employing mechanisms like hash, achieve remarkable
results in general scenarios. However, as previously mentioned, these methods encounter bottle-
necks when faced with various text instances in scene images, rendering them inapplicable to ST
retrieval.

Conventional tailored text retrieval methods [1, 2, 33] primarily target cropped document text
images, gauging the distance between images and query terms via neural networks. Nonetheless,
these methods are limited in real-life scenarios, where arbitrarily shaped STs are blended with
complex backgrounds. IRTC [21] first introduces the ST retrieval task and provides a character-
centric approach. Seeking to bypass efficiency issues inherent in the two-stage paradigm, subsequent
works like [9] design an end-to-end trainable network, drawing inspiration from YOLO [26]. Their
method involves ranking the similarity between the PHOCs [2] of query text and detected text
instance proposals. Another innovative approach, RL-STR [20], poses the task as an efficient
sequential selection from the set of extremal regions, leading to real-time ST retrieval performance.
Recent advancements have seen methods, such as the one introduced in [38], that directly calculate
the cross-modal cosine similarity between text image instance proposals and query text. The results
from these methods have showcased marked improvements in retrieval performance. However,
these “T&I” methods, despite their innovations, have their limitations. Some are merely adaptations
of existing “T&T” methods, while others grapple with bridging the vision-language modality gap.
A study [44] offers a fresh paradigm in this context. This approach aims to transform the cross-
modality retrieval challenge, viewing it as a problem rooted in similarity measurement within
the visual modality. However, the “I&I” approach predominantly emphasizes visual similarity,
inadvertently overlooking the textual ambiguities that arise from visually similar characters.

3 Methodology

This section details the proposed ST retrieval machine in a top-down fashion: Initially, we pro-
vide an overview of the method, followed by a detailed explanation of the network architecture.
Subsequently, the learning tasks employed for optimization are introduced.

3.1 Overview

We commence with an outline of the proposed SM?L framework. The network architecture is
depicted in Figure 3. In the training phase, the framework incorporates a ST image branch, a SGT
image branch, and a T branch. The ST branch extracts features from all potential ST instance
proposals, represented as F*, for a given ST image (detailed in Section 3.2). For a specific query
text Q, the SGT branch converts its graphical representation R into a stylized graphical word SG.
This transformation ensures alignment with the predefined content of R and style criteria SG,
producing a visual feature F*8' (elaborated in Section 3.3). Concurrently, the T branch generates
a textual feature F' for the query text, as explained in Section 3.4. These three features facilitate
the optimization of the network within a multi-task learning framework, discussed in Section 3.5.
During inference, the system employs only the ST and T branches, calculating the cosine similarity
between these two types of features for the ranking task. This approach preserves the processing
speed compared to existing SOTA methods, a claim substantiated in Section 4.4.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 12, Article 379. Publication date: November 2024.



379:6 S. Zhu et al.

" ST Branch

\
I
[
[

I
[
[
[

o:1[0.[10]
03] 0]0210]

\
\
1
i
- 1
—>  Detection N ] Vlsual_ :
o Transformation !
H
|
/

St prant ‘: i

G sG H D B R e T T N

pesid  Style | IEY @ Visual : , 1

Render — > > - 50 > . P i !

7777777777777777777777 botles  Transfer (A = > ~ Transformation | " Cplastic”

Query Text: Q A 1 '

R J "bottles” 1

plastic"  — 1T N A

“bottles” (T Branch \: - TN sk TTTTTTTTTTe Y
,,,,,,,,,,,,,,,,,,,,,,, 1

E : i Vs Image E

Word I— Textual 1 !

) B —— —_ . — I H

Embedding Transformation ! mage ;

' 1

Fig. 3. The overview architecture of the proposed SM2L. “RL” “CL.” and “AL” denote ranking learning,
character learning, and adversarial learning, respectively.

Conv
Conv

>
plastic ~ 5 2

g - - §— stic
'ﬁk 11 e
-] C

_'

Conv
|
Conv
1
Conv

(b) ' O]

Fig. 4. The architecture of different modules. (a) The visual transformation module with two convolution
layers and one BiLSTM layer. (b) The textual transformation module with one convolution layer and one
BiLSTM layer. (c) The style transfer module with two encoders and one decoder. “C” denotes concatenation
operation.

3.2 ST Branch

The ST branch is designed to detect all potential ST instances and extract individual visual features
for each. To achieve this, we utilize a general anchor-free object detector, designated as Det™, for the
generation of Rol features. This process is expressed as R = Det™(I), R = r;/Ni = 1 € RNXCRXWrxHg
Subsequently, a visual transformation module, Trans®, is employed to derive discriminative features
from ST, which are crucial for subsequent cross-modal calculations. As depicted in Figure 4(a), this
module comprises two convolution layers followed by a BiLSTM layer. Previous studies such as
[31, 42] have demonstrated the effectiveness of this configuration in various ST-related tasks. The
feature extraction is formalized as F*' = Trans® (R) € RV**W  where W and C denote the width
and channel dimensions of the features, respectively.!

3.3 SGT Branch

One of the primary challenges in existing cross-modal retrieval methods is the significant modality
gap between candidate images and query text, which adversely affects retrieval performance. To
cope with this issue, we employ an SGT branch to produce a stylized middle modality feature of
the query text and the ST instance proposals, thereby bridging the gap between the two modalities.

Post-convolution, the feature height is reduced to 1, which is then squeezed to facilitate processing by the BiLSTM layer.
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As shown in the SGT branch of Figure 3, we first utilize a widely used rendering generator
[12] to produce image-format data for the query text, as G = Gen®8'(Q), where G € R!*WeoxHo,
Subsequently, a compact encoder-decoder style transfer module, shown in Figure 4(c), processes
G and R to produce stylized text images SG. Notably, each query text can generate N SGTs,
corresponding to the number of ST instance proposals, which can be formatted as:

SG = StyTrans*®'(Q, R), SG = {sg;} ¥, € RN*CrxWoxHo, (1)

Subsequently, a feature extraction module, the tiny version of Vgg [32], extracts the visual informa-
tion from SG. Then, a visual transformation module is applied to understand the graphical text
(GT) feature. We summarize this process as: F*8' = Trans®8' (Vgg(5G)) € RM*N)XCXW Notably,
the text number M is the same as the N of F*' in the training phase.

3.4 T Branch

Intuitively, following the 1&I paradigm, the ST and SGT branches can be directly used for the
retrieval task. However, this approach may overlook the semantic features, potentially leading to
retrieval errors when visually similar texts are present. For instance, words such as “same” and
“some” might appear close in visual feature space due to their structural similarities, thus skewing
the similarity calculation in retrieval tasks. Moreover, the style transfer module in the SGT branch
could impede inference speed. To address these issues, we incorporate the T branch in the training
phase to anchor semantic similarity, while omitting the SGT branch during inference for efficiency.
In the T branch, following the setting in [38], we transform the query text Q into a semantic feature
space. Specifically, Q undergoes processing through an embedding layer and bilinear interpolation
to produce the word embedding E € RNXCeXWe Subsequently, as depicted in Figure 4(b), the textual
transformation module maps E to the feature F', defined as: F' = Trans'(E) € RNXW,

3.5 Multi-Task Learning

As discussed from Sections 3.2 to 3.4, the proposed SML framework can offer three types of features,
namely, F®, F*8', F'. This encourages us to devise a multi-task learning approach to constrain the
visual feature coherence and text semantic feature consistency in the training phase, thereby
improving the retrieval performance of the machine. In this context, we use three tasks in the
learning procedure, namely, ranking learning, character learning, and adversarial learning.

3.5.1 Ranking Learning Task. We first employ the ranking learning task, constrained by the
cosine similarity loss and triplet loss, to learn a joint embedding space for the visual and semantic
features. As shown in Figure 3, cosine similarity between the above three features is applied for
ranking learning. In light of [38], we calculate the pairwise similarity between any two features,
such that the visual and text features can be aligned. Before presenting the loss, we denote the
features from any two modalities as F?, F1 € F = {F st Fs8t, F'}. In this context, an encoder, denoted
by Enc, first encodes any two modalities of features, Ff and F](.I, into vector representations. Then,
the cosine similarity of those two vectors can be calculated as:

Si5(FP, FY) = tanh (Enc (7)) " tanh (5ne (F?))

|| tanh (Enc (F”)) | - || tanh (Enc (qu)) ||, @

where i, j € [1, N]. Notably, only the S; ;(F*, F') (illustrated in the red box of Figure 3) is performed
as the ranking basis during the inference phase. Since there is no ground-true label for the cosine

similarity, we employ another similarity metric as the supervision signal. Specifically, given the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 12, Article 379. Publication date: November 2024.



379:8 S. Zhu et al.

label text (le l Fq) of (Fp , F(.I), the label of similarity can be denoted as:

(115

Sij(FP,F) =1- ———— 2" (3)
max (lng’L |1F;;|)
where ED denotes the edit distance [15]. Therefore, the loss function is shown as follows:
(L, (F?,F9)),, = SL (s,-, (PP, F9), 85 (PP, Fq)) , @)
1 ol N
= — P Fq
Lcos - Z Z mjax (Ls (F s F ))i,j s (5)

(FP,Fa)eF i

where SL denotes the smooth L1 loss.

Meanwhile, triplet loss [4, 27], popularly used for retrieval tasks, is also used to learn a discrimi-
native embedding space. In our task, we elaborate on it as a cross-modality triplet loss. Given the
anchor feature Ff , the positive feature F 9 and the negative feature F4, Lyip can be shown as:

Lair (FE FLF?) =max (0, 1 — |S (FE, FI) |

+|S (F55F2)|m)s (6)
Ltrip = -Lpair(FSt Fsgt Fsgt) + -Epair(Ftslt, Fi, Ft—)
+ ~L:pau'( sgt Fsgt) (7)

where p denotes the margin and | - |,, denotes the mean absolute value for the similarity. Notably,
in our triplet loss, the anchor sample and positive/negative one come from different modality data.
In summary, the ranking loss can be formulated as:

Lrank = Leos + Ltrip~ (8)

3.5.2  Character Learning Task. Although the ranking learning task optimizes the similarity
of features, excavating the explicit characters of visual modalities can also improve semantic
discrimination in multi-task learning. Specifically, we utilize an Multi-Layer Perceptron (MLP)-
based text classifier to predict the text strings of images in ST and SGT modalities. As shown in
Figure 3, the predicted text Popar € Pepar = {P5 P } is first labeled by its ground-truth text,

char’ char
denoted by Pcp,,. Then, the cross-entropy loss L is adapted to constrain each character of the text
string, defined as: ¢ ¢ st psat
Lenar = Lee (Pcshar’ Pcshar) + Lee (P }glar c}glar) (9)

where (Pcpar, Pchar) € RNXCrxWe and (Cp, Wp) denotes the number of potential characters and the
max length of the predicted text, respectively.

3.5.3 Adversarial Learning Task. To further minimize the modality gap, we employ adversarial
learning in the training phase. That is, the min-max optimization process maps the features from
all three modalities to the same distribution. Specifically, an MLP-based modality classifier, acting
as the discriminator in Generative Adversarial Network [10], receives each feature as input and
produces the corresponding modality probability P4y € Pagy = {P:jjlv :itv P; 4y)- The discriminator
can predict whether the feature is derived from image or text format data. The adversarial loss is
given by:

Laav = Lee (PSt P

adv’ © adv

t t
) + Lee (Psgv Ziv)

+ Lee(PLy Py, (10)

where P4, € RY is the ground-truth modality label for each feature, i.e., image or text.
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3.6 Training Objective

In the training phase, the proposed network is optimized by a multi-task learning loss, defined as:
Liotal = Ldec + Lsty + Lrank + Lechar — Ladvs (1 1)

where Ljc. and Ly denote the detection loss [49] and the style transfer loss [25, 43], respectively.
Notably, we follow the adversarial network [10] to optimize the parameters, i.e., the parameters of
the discriminator and the three branches are alternately optimized.

4 Experiments

In this section, we first introduce the evaluation metric, i.e., mean Average Precision (mAP). Then,
the datasets and implementation details are described. Lastly, we perform comparison experiments
and ablation studies to validate the advantages of the proposed SMZL.

4.1 Evaluation Metrics

In the evaluation process, we routinely utilize mAP and Frames Per Second (FPS) to assess
retrieval performance and inference speed, respectively. The computation of mAP is grounded in
the cosine similarity between the query text and text proposals during the testing phase. Based
on the similarity scores, the retrieved instances are sorted in descending order, along with their
corresponding ground truths. Given N retrieved instances, the precision and recall values are
calculated in the condition of predicting correctly the top k instances separately, where 1 < k < N.
These calculations contribute to a Precision-Recall curve, with the Average Precision (AP) being
the area under this curve. The mAP is then derived as follows:

K
1
mAP = — ) AP, 12
7(2 (12)

where K stands for the number of query texts, and AP; denotes the AP corresponding to each
query text.

4.2 Datasets

Following the common setting of existing methods, we employ two datasets for training and three
other ones for testing, as shown below:

Training Datasets. SynthText-900k [9]: it contains 900k synthetic ST images generated by the
rendering model [12], which is widely used in the area of ST tasks. Multi-lingual Scene Text 5k
(MLT-5k): a subset of MLT [22], which contains 5,000 English language images.

Testing Datasets. Street View Text (SVT) [39]:* it contains 349 images gathered from Google Street
View. Each image is annotated with bounding boxes and word labels. IIIT Scene Text Retrieval
(STR) [21]:° it contains 10,000 images and 50 query words collected from Google and Flickr. Notably,
the annotations are merely word labels without bounding boxes. Coco Text Retrieval (CTR):°
since [38] does not offer a specific dataset, we select 1,223 images with complex text instances by
50 query words from Coco-Text [37], which are annotated by word labels and bounding boxes.

Zhttp://datasets.cvc.uab.es/rrc/SynthText_90KDict.tar
3https://github.com/lanfeng4659/STR-TDSL

4https://tc11.cve.uab.es/datasets/SVT_1

Shttps://cvit iiit.ac.in/research/projects/cvit-projects/the-iiit-scene-text-retrieval-str-dataset

Shttps://bgshih.github.io/cocotext/
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4.3 Implementation Details

We implement our model using Pytorch [23] with four NVIDIA RTX 3090 GPUs for training and
only one GPU for testing. To enhance feature extraction, we introduce a multi-scale variant of the
SM2L framework, incorporating the multi-scale operation in the detection module, i.e., Adaptive
Training Sample Selection (ATSS) [53]. In the ST branch, the Rol features R from the detection
module are described by the dimensions Cg, W, Hg, representing channel, width, and height,
respectively. Similarly, in the GT branch, W, Hp refer to the width and height of the text image
G and SG, respectively. In the T branch, Cg, Wg correspond to the channel and width of the word
embedding E. The size of each text image proposal r; in R and word embedding E are 256 X 4 X 15
and 256 X 15, respectively. The channel C and width W of features F*"/se"* are both set to 128 and
15. The Cp and Wp of Ppay and Py, are set to 37 and 15 in the character learning task. The size of
the generated GT image G and SG is 1 X 32 X 128 in both the training and inference phases. We
follow the rendering model [12] and adopt Arial as the font of G, to ensure the clarity and legibility
of characters.

In aligning with the basic settings and word augmentation strategies outlined in [38], our training
phase is divided into two distinct stages, both utilizing SGD optimizers with a weight decay of
0.0001 and a momentum of 0.9. Initially, in the pre-training stage, the model undergoes training on
the Synth-900k dataset for 112,500 iterations, starting with a learning rate of 0.01, which is reduced
by a factor of 0.1 every 37,500 iterations. This stage uses a batch size of 64, and images are resized
to 640 X 640. During the fine-tuning stage, the MLT-5k dataset with data augmentation strategies is
employed, training the model with a batch size of 32 for 10,000 iterations. The initial learning rate is
0.001, decreasing to 0.0001 after 50,000 iterations. Our empirical observations indicate that the total
loss function shows negligible sensitivity to the weights of sub-loss functions, prompting us to set
all weights to 1. Furthermore, the margin value p in Ly is fixed at 0.1. Notably, all three branches
undergo simultaneous training, and only the ST branch and T branch are employed for inference.
For inference, we resize the image width to 1,150 while preserving the original aspect ratio.

4.4 Comparison with SOTA Methods

We compare our SM?L with a range of leading spotting and retrieval methods on the SVT, STR,
and CTR datasets. For the spotting methods, we include high-performance spotters such as Mask-
TextSpotter V3 [16], ABCNet V2 [18], ABINet++ [6], TESTR [55], ESTextSpotter [14], as well as
real-time spotters like PGNet [40] and PAN++ [41]. The latter retrieval methods consist of several
representative tailored ones, such as IRTC [21], YOLO-STR [9], RL-STR [20], TD-STR [38], and
VM-STR [44]. To evaluate the retrieval performance of spotting methods, we utilized the normal-
ized edit distance metric to determine the similarity score between recognized texts and their
corresponding labels. All experimental results of the above methods are derived from the officially
released models.

4.4.1 Quantitative Analysis. To delve into the specific performance metrics, we report the
quantitative results in Table 1.

Our SM2L model, especially in its multi-scale implementation, SM2L(MS), not only matches the
retrieval speed of the TD-STR series but also demonstrates SOTA performance. Notably, this method
outperforms the T&T method ESTextSpotter [14] and the T&I method TD-STR(MS) [38] by 6.82 and
1.90, respectively. Our vanilla solution (avg. 82.66) exceeds the performance of leading fast methods
like PGNet [40] with improvements of 9.29 in average mAP across three datasets, nearing the 83.65
of TD-STR(MS). It is noteworthy that conventional T&T methods show limited performance on
the CTR dataset, which often contains images with small text instances, highlighting the inherent
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Table 1. Performance Comparison (mAP Score) on SVT, STR, and CTR

Type Model Venue SVT STR CIR | AVG | FPS
PAN++ [41] TPAMI'21 | 80.29 69.54 69.85 | 73.23 | 13.44
PGNet [40] AAAT21 | 80.78 74.57 64.75 | 73.37 | 33.33
MaskSpotter V3 [16] | ECCV’20 | 83.02 7296 64.32 | 73.43 | 2.03
T&T ABCNet V2 [18] TPAMI'22 | 86.12 78.18 63.19 | 75.83 | 4.17
ABINet++ [6] TPAMI'23 | 85.50 78.70 63.32 | 75.84 | 4.00
TESTR [55] CVPR’22 | 86.37 79.16 68.44 | 77.99 | 3.45
ESTextSpotter [25] ICCV’23 | 8594 7839 71.85 | 78.73 | 5.00
IRTC [21]* ICCV'13 | 56.24 4270 - - -
YOLO-STR [9] ECCV’18 | 8499 69.55 41.07 | 69.38 | 11.11
a1 | YOLO-STR(MS) [9] | ECCV'18 | 8632 7192 4279 | 7132 | 3.57
RL-STR? [20] PRI'21 | 8574 71.67 - - -
TD-STR [38] CVPR’21 | 89.24 76.94 73.59 | 79.36 | 18.01
TD-STR(MS) [38] | CVPR’21 | 91.57 81.15 78.23 | 83.65 | 3.66
&1 VM-STR® [44] WSDM23 | 90.95 77.40 - N -
T&I&I SM?L (ours) / 92.05 7932 76.60 | 82.66 | 18.01
SMZL(MS) (ours) / 93.43 83.00 80.21 | 85.55 | 3.66

2indicates the method does not release code, and some results, e.g., CTR, AVG and FPS, cannot be obtained

which are replaced by None (“-”). AVG stands for the average mAP score among the three datasets. “MS”

means multi-scale feature extraction in the detection module during inference. The best scores are bold.

limitations of this paradigm where detection capability is constrained by the recognition sub-task.
In contrast, our method exhibits robust generalization across all three datasets.

4.4.2  Qualitative Analysis. In addition to the quantitative analysis, we present qualitative ex-
periments to further demonstrate the superiority of our method. First, we conduct a comparative
analysis of SM2L with all the open source methods previously mentioned. Figure 5 showcases the
localization accuracy of these methods using various query texts and their corresponding images.
Notably, SM2L exhibits superior localization precision. For instance, in the third row of Figure 5,
SM?2L accurately delineates the target text, whereas competing methods erroneously identify seman-
tically similar words. This underscores the effectiveness of the designed stylized middle modality.
Additionally, as shown in the second row, SM?L correctly localizes “pak;” distinguishing it from the
similar-looking “PAYA,” highlighting the efficacy of semantic alignment in the multi-task learning
of our approach. Conversely, conventional spotting methods, which pre-identify and recognize all
the text instances in a scene image, falter with ambiguous queries. An example is their struggle
with “market” when “supermarket” is present, as depicted in the first row. This limitation reduces
their utility in the ST retrieval task. To investigate the flexible retrieval capability of different
paradigms, we present the retrieval results of different approaches on one image, each based on
different query texts. As illustrated in Figure 6, our proposed SM2L properly localizes the target
text proposals according to different query texts. In contrast, T&T methods commonly struggle to
process sub-words effectively, such as “yart” and “city” Furthermore, the T&I method, TD-STR, is
misled by similar or completely irrelevant areas, resulting in erroneous retrieval outcomes.

Following common practices [38], we first visually demonstrate the retrieval efficacy of our SM2L
model on the CTR dataset. This is depicted in Figure 7, where we showcase the top-3 retrieval results
for each query text. For example, our proposed method effectively locates the correct “restaurant”
among redundant blurry texts in complex backgrounds, further reinforcing its robustness in real-life
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Jrava pava rava pava

PAN++ PGNet MTS v3 TESTR ABCNet V2 ABINet++ ESTextSpotter TD-STR SM*L(ours)

Fig. 5. The retrieval results in SVT. The query texts are “market,” “pak,” “crest,” “hut,” “fitness,” “zone,” “hotel,”
“joe,” and “town” from left to right. The comparison method “MTS v3” denotes Mask TextSpotter v3.
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Fig. 6. The retrieval results on an image based on query texts “arts, cityarts,” and “yart” The comparison

method “MTS v3” denotes Mask TextSpotter v3.

scenarios. Driven by these observations, SM2L demonstrates SOTA performance both quantitatively
and qualitatively.

4.5 Ablation Study

In this section, we provide ablation studies to verify the effectiveness of the Text-Image-Image
(T&I&I) paradigm, the style transfer module, the multi-task learning scheme, and the detection
module. All the experiments are studied on three datasets, i.e., SVT, STR, and CTR.

4.5.1 Effect of the T&I&I Paradigm. In this work, we craft a novel T&I&I paradigm to construct
the SM?L network, achieving outstanding performance in ST retrieval tasks. To highlight the
significance of each modality in the model, we carry out comparative experiments involving
various branch combinations. A notable addition to our experimental setup is the introduction of
a simplified GT branch. This branch, different from the SGT branch, excludes the style transfer
module, serving as a middle modality to assess the effectiveness of our advanced SGT branch.
Additionally, we tailored the learning objectives for each branch combination as needed. The results,
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adidas airlines restaurant

3

Fig. 7. The top-3 retrieval results of the proposed SM2L based on query texts “adidas;
and “donuts” in CTR.

»

L »
airlines,” “restaurant,

Table 2. Ablation Study of the T&I&I Paradigm

Branch
ST GT SGT T SVT STR CTR | AVG | FPS
(1) V4 - - v | 91.07 78.04 76.29 | 81.80 | 18.01
(i) | v/ v - - |1 90.10 78.08 75.56 | 81.25 | 18.46
(iii) | v v - v | 91.63 78.13 7632 | 82.02 | 18.01
@iv) | V - v v | 92.05 79.32 76.60 | 82.66 | 18.01

“V” stands for utilizing the branch in the training phase. The gray cell denoted the
branch used in the inference phase. The bold number denotes the best performance.

detailed in Table 2, lead to several key conclusions: (1) The full SM?L model with all three branches
during training surpasses the performance of both T&I and I&I paradigms (see (i), (ii), and (v)). This
validates our approach of concurrently maintaining semantic and visual coherence between the
modalities. (2) The inclusion of our SGT branch yields a substantial performance improvement
(+0.64 in avg. map) compared to the normal GT (see (iii) and (v)). This confirms the efficacy of
the style transfer module in bridging the ST and T branches. (3) Within the T&I&I paradigm, the
retrieval of ST instances using stylized graphic text is as effective as using direct textual data (see
(iv) and (v)). This demonstrates the capability of our model to align different modalities of the
same content. Nevertheless, the approach that utilizes textual data for retrieval exhibits greater
computational efficiency, thus establishing an optimal balance between accuracy and efficiency.

4.5.2  Effect of the Style Transfer Module. In this study, experiments were conducted to assess the
contribution within the style transfer module, a critical component within the SGT branch of the
SMZL network. As depicted in Figure 4 in Section 3.3, this module, adopting a streamlined encoder-
decoder architecture, aims to transfer the style from ST instance proposals to GT. For comparative
analysis, we implemented a variation of SM2L, integrating MOSTEL [25], a conventional ST editing
method, to perform style transference. However, as indicated in Table 3, the incorporation of
the pre-trained MOSTEL model resulted in decreased retrieval accuracy. This is attributed to the
poor adaptation of MOSTEL to ST instances with various properties, such as small zones and low
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Table 3. Ablation Study of Style Transfer Module

Module | SVT STR CTR | AVG | Param. | FLOPs
MOSTEL | 90.41 77.02 73.93 | 80.45 | 59.78M | 18.01 G
Ours 92.05 79.32 76.60 | 82.66 | 4.96M | 2.29 G

MOSTEL [25] is a typical scene text editing method. Here, we adopt a frozen model
with pre-trained parameters in the training phase. The “Param.” and “FLOPs”
denote the parameters and computational complexity of SM?L with different
modules during the training phase, respectively. The bold number denotes the
best performance.

Table 4. Ablation Study of Multi-Task Learning

Loss SVT STR CTR | AVG
Baseline | 90.89 78.06 74.89 | 81.28
+Luip 92.00 7816 74.95 | 81.70
+Lchar | 9133 78.60 75.59 | 81.84
+Lagv | 92.05 79.32 76.60 | 82.66

“Baseline” denotes that the model is only trained by
Liec> Lsty, and Leos. The bold number denotes the
best performance.

quality. Additionally, attempts to re-train this large-size model within the SM2L framework (59.78
M vs. 4.96 M) led to non-convergence. Therefore, we cannot report the corresponding results here.
These findings collectively underscore the superior adaptability and efficiency of our compact style
transfer module.

4.5.3 Effect of the Multi-Task Learning. In the implementation of SM2L, the optimization phase
is driven by three distinct learning tasks, employing a variety of loss functions: triplet loss Liip,
character loss Lpar, and adversarial loss £,4,. Here, we conduct a series of experiments to demon-
strate the effectiveness of this multi-task learning paradigm. It is noted that the baseline model for
comparison predominantly utilizes Lgec, Lsty, and Lcos for optimization. The outcomes of these
experiments, presented in Table 4, offer two significant insights: (1) Our baseline model, restricted
to fundamental loss functions, attains a performance level comparable to a leading method cited
in [38], as evidenced by similar average mAP scores across the three datasets (e.g., 81.28 for the
Baseline vs. 79.36 for TD-STR). (2) The integration of a broader spectrum of loss functions notably
boosts the performance of the SM?L model. These results highlight the value of optimizing the
retrieval network by considering both visual and semantic similarities.

4.5.4 Effect of the Detection Module. As mentioned in the main article, we employ the anchor-
free general object detector, i.e., ATSS [49], as our detection module. This module, which tends to
generate sufficient text proposals, benefits subsequent similarity ranking based on indefinite query
texts. To verify the effectiveness of the detection module, we conduct a comparison experiment with
a tailored ST detection module used in previous methods, i.e., Fully Convolutional One-Stage
Object Detector (FCOS) [35], while other components remain unchanged. The quantitative results
and illustrations are shown in Table 5 and Figure 8, which reveal that: (1) The ATSS-based SM?L sig-
nificantly outperforms the FCOS-based SM2L across all metrics. (2) The FCOS-based SM?L achieves
better performance than the ATSS-based TD-STR (80.89 vs. 80.72), indicating the effectiveness of
the proposed “T&I&I” paradigm. (3) The ATSS-based detection module provides more accurate
proposals for small STs, such as “THE” in Figure 8(b), while the FCOS-based one can only generate
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Table 5. Results of Different Detection Modules

Method Detector | SVT STR CTR | AVG
FCOS 89.24 76.94 63.59 | 79.36
ATSS 90.28 77.82 74.07 | 80.72
FCOS 90.43 77.28 7496 | 80.89
ATSS 92.05 79.32 76.60 | 82.66

TD-STR

SM?L

The bold number denotes the best performance.

SM*L(FCOS) SM*L(ATSS)

SM2L(FCOS) SM2L(ATSS)
(@ (b)

Fig. 8. The text image instance proposals generated by SM?L with two detection modules.

several notable text proposals. Compelled by the above observations, our proposed detection
module, profiting from the precise proposal generation, is well-suited for the ST retrieval task.

5 Conclusion

In this article, we propose SM2L, a novel T&I&I approach encompassing three modality branches,
specifically devised for ST retrieval tasks. Diverging from conventional T&I methods, our approach
integrates a stylized middle modality and employs multi-task learning during the training phase to
concurrently ensure visual and semantic coherence. This strategy results in notable performance
enhancements without necessitating additional computational resources. Extensive experiments
and ablation studies substantiate the superiority of SM?L, consistently surpassing existing state-
of-the-art methods in all metrics across three distinct datasets. We believe our study will serve as
a strong baseline for future work and inspire more work in the line of SM2L for the ST retrieval
task. Future work will focus on developing a more generalized method for multiple languages and
arbitrarily oriented text.
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